

Welcome to yli’s documentation!

yli is a simplistic Python 3.7+ library for writing web apps.

yli operates on the guiding principle of: Your web server is a function. This means that your
web app can be represented with the following signature:

async def app(request: Request) -> Response:
 ...

Installation

yli is available on PyPI under yli:

$ poetry add yli

Or for the latest development version:

$ poetry add git+https://github.com/Fuyukai/yli.git

	Guide
	Your first app

	Routing

	Subrouting

	Method matching

	Path parameters

	Chaining application functions

	Pre-conditions

	Writing your own composers

	Serving
	Built-in

	SSL

Guide

In yli, all web applications are simply represented by a single root function that takes a
Request, and returns a Response. Any complexity such as routing can be
represented as these functions calling other functions.

These functions are called application functions. You can also have a class be an application
function by giving an async def __call__(self, req: Request) -> Response:`

Your first app

A simple hello world app would look like the following:

async def my_app(r: Request) -> Response:
 print("Hello, world!")

async def main():
 webserver = Webserver([BindInfo(7777)], my_app)
 await webserver.run()

trio.run(main)

Note

For more information on how the bundled webserver works, see Serving.

When running this, you’ll get a nice Hello, world! message in the console when you GET /.
But, on the client side, you’ll get:

$ http GET http://127.0.0.1:7777/

HTTP/1.1 500 Internal Server Error
content-length: 41
date: Sun, 17 Nov 2019 03:08:35 GMT
server: yli (python/3.8.0)

Response function didn't return anything!

Your response function needs to always return a response. You can do this with the
Request.respond() helper function. Change your request handler to:

async def my_app(r: Request) -> Response:
 return r.respond(body="Hello, world!", status_code=200)

Now when you do a HTTP reequest, you’ll get a nice response:

$ http GET http://127.0.0.1:7777/

HTTP/1.1 200 OK
content-length: 13
date: Sun, 17 Nov 2019 03:12:37 GMT
server: yli (python/3.8.0)

Hello, world!

Routing

You may note that if you try any other route other than /, you still get a plain
Hello, world! response:

$ http GET http://127.0.0.1:7777/abc

HTTP/1.1 200 OK
content-length: 13
date: Sun, 17 Nov 2019 03:13:19 GMT
server: yli (python/3.8.0)

Hello, world!

This is because your function doesn’t care what is passed in - it’s a plain function. However,
yli includes some callables that do care what is passed in - such as the Router. The
router can be used for routing certain paths to functions.

from yli.compose import Router

async def hello(request: Request) -> Response:
 return request.respond(body="Hello!")

async def goodbye(request: Request) -> Response:
 return request.respond(body="Goodbye!")

async def main():
 router = Router()
 # you could also chain these calls, router.route(...).route(...)
 router.route("/hello", hello)
 router.route("/goodbye", goodbye)

 await Webserver([BindInfo(7777)], router).run()

Now your app will respond the appropriate routes with the right response:

$ http GET http://127.0.0.1:7777/hello
HTTP/1.1 200 OK
content-length: 6
date: Sun, 17 Nov 2019 03:17:48 GMT
server: yli (python/3.8.0)

Hello!

$ http GET http://127.0.0.1:7777/goodbye
HTTP/1.1 200 OK
content-length: 8
date: Sun, 17 Nov 2019 03:17:50 GMT
server: yli (python/3.8.0)

Goodbye!

$ http GET http://127.0.0.1:7777/unknown
HTTP/1.1 404 Not Found
content-length: 62
date: Sun, 17 Nov 2019 03:18:42 GMT
server: yli (python/3.8.0)

Couldn't match route (full route: /unknown, working: /unknown)

404s

To override 404s, just pass an application function as the no_route_fun argument:

async def handle_no_route(req: Request) -> Response:
 return req.respond(body="Not found! Go away!", status_code=404)

async def main():
 router = Router(no_route_fun=handle_no_route).route(...)

$ http GET http://127.0.0.1:7777/unknown
HTTP/1.1 404 Not Found
content-length: 19
date: Sun, 17 Nov 2019 03:21:44 GMT
server: yli (python/3.8.0)

Not found! Go away!

Subrouting

Since a router counts as an application function, you can nest them easily.

async def xyz(request: Request) -> Response:
 return request.respond(body="123")

async def main():
 rooter = Router()
 nested_router = Router().route("/xyz", xyz)
 rooter.route("/abc", nested_router)

Now, requesting on /abc/xyz will call your xyz function. Subrouters also have their own 404
handlers, so /abc/anything_else will call the subrouter’s handler.

$ http GET http://127.0.0.1:7777/abc/xyz
HTTP/1.1 200 OK
content-length: 3
date: Sun, 17 Nov 2019 03:25:37 GMT
server: yli (python/3.8.0)

123

Method matching

You’ll notice in these last examples that your functions completely ignored methods. GET or POST
would both call the same function. Often, you don’t want that. Enter the MethodMatcher,
a helper application function which matches up methods to your functions.

from yli.compose import MethodMatcher

async def abc_get(q: Request) -> Response:
 return q.respond(body="I've been get!")

async def abc_post(request: Request) -> Response:
 return request.respond(body="I've been posted!")

async def main():
 # you can do method=fn in the constructor...
 matcher = MethodMatcher(get=abc_get, post=abc_post)
 # or chain calls:
 matcher = MethodMatcher().match("get", abc_get).match("post", abc_post)

$ http GET http://127.0.0.1:7777/
HTTP/1.1 200 OK
content-length: 14
date: Sun, 17 Nov 2019 03:29:37 GMT
server: yli (python/3.8.0)

I've been get!

$ http POST http://127.0.0.1:7777/
HTTP/1.1 200 OK
content-length: 17
date: Sun, 17 Nov 2019 03:29:40 GMT
server: yli (python/3.8.0)

I've been posted!

$ http PUT http://127.0.0.1:7777/
HTTP/1.1 405 Method Not Allowed
content-length: 23
date: Sun, 17 Nov 2019 03:29:46 GMT
server: yli (python/3.8.0)

Method not allowed: PUT

Like with Router, you can override the default 405 behaviour by passing
invalid_method_fun to MethodMatcher.

Since MethodMatcher is an application fun, you can pass it to helpers like Router
to only allow specific methods on a route, for example.

Path parameters

Sometimes you might want a parameter in the URL path to be passed to you, for example an ID in a
RESTful API. For this, PathParam exists.

from yli.compose import PathParam

async def print_userid(r: Request) -> Response:
 print(r.path_params["userid"]
 return r.respond(body="OK")

async def main():
 router = Router()
 userid_handler = PathParam("userid", print_userid) # you could pass a router to subroute!
 router.route("/api/v1/user", userid_handler)
 await Webserver(..., router).run()

Chaining application functions

It is possible to chain application functions together using Chain.

from yli.compose import chain, print_response

chained = Chain(my_func).then(print_response)

But wait! How can print_request be (Request) -> Response if my_func should return
Response? I lied a bit - only one application function is allowed within a Chain.
It is used to add request pre-processors or response post-processors instead. Each function
BEFORE the application function should be a (Request) -> Request, and each function after it
should be a (Response) -> Response.

For example, to use print_request() to print the result of all responses, you can chain it
after your main application function:

rooter = Router().route(...)
app = Chain(rooter).then(print_response)
await Webserver(..., app).run()

Pre-conditions

Whilst Chain can be used to transform requests/responses appropriately, it can’t be
used to require certain parts of an input. That is where ShortCircuit comes in.
Functions passed to the .next() of ShortCircuit can either return a request (optionally,
transformed) or return a response to stop the chain early.

async def requires_header(r: Request) -> Union[Request, Response]:
 if not "my-secret-header" in r.headers:
 return r.response(body="Not allowed!", code=401)

 return r

app = ShortCircuit().next(requires_headers).last(my_app_router)

Writing your own composers

yli has effectively zero magic - basically everything is an application function, so you can
compose them relatively freely. To write your own composer, simply have it be an application
function that takes another function, and call it (or maybe don’t!) and return the appropriate
response objects.

Serving

Built-in

yli includes a trio-powered webserver that can be used to serve your app. Webserver
takes a list of BindInfo, and a single parameter that is your application function.

from yli.http import Webserver, BindInfo

async def main():
 webserver = Webserver([BindInfo(7777)], app)
 await webserver.run()

trio.run(main)

SSL

SSL support can be enabled by passing a SSLContext to BindInfo:

ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
ctx.load_cert_chain("cert.pem", "key.pem")

s = Webserver([BindInfo(7777), BindInfo(7778, ssl_context=ctx)], app)
await s.run()

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to yli’s documentation!

 		
 Guide

 		
 Your first app

 		
 Routing

 		
 404s

 		
 Subrouting

 		
 Method matching

 		
 Path parameters

 		
 Chaining application functions

 		
 Pre-conditions

 		
 Writing your own composers

 		
 Serving

 		
 Built-in

 		
 SSL

_static/file.png

_static/minus.png

_static/plus.png

